用示波器观测动态磁滞回线实验报告

2200011477 李昊润 六组 7 号 2024 年 4 月 26 日

1 数据处理

1.1 100 Hz 下铁氧体饱和磁滞回线

表 1: 100 Hz 下铁氧体饱和磁滞回线的测量结果

测量次数	$U_{R_1}(\mathrm{mV})$	H(A/m)	$U_C(\mathrm{mV})$	B(mT)		
1	212.0	122.3	14.40	387.1		
2	91.0	52.5	12.50	336.0		
3	31.0	17.9	8.70	233.9		
4	0.00	0.00	3.65	98.1		
5	-6.00	-3.46	2.10	56.4		
6	-11.0	-6.35	1.05	28.2		
7	-16.5	-9.52	0.00	0.00		
8	-36.0	-20.8	-4.00	-107.5		
9	-80.0	-46.2	-10.10	-271.5		
1	-217.0	-125.2	-14.40	-387.1		
2	-58.0	-33.5	-11.35	-305.1		
3	-18.0	-10.4	-7.75	-208.3		
4	0.00	0.00	-4.15	-111.6		
5	12.5	7.21	-2.00	-53.8		
6	17.5	10.1	-1.00	-26.9		
7	22.0	12.7	0.00	0.00		
8	51.0	29.4	5.60	150.5		
9	101.5	58.6	11.10	298.4		

图 1: 100 Hz 下铁氧体饱和磁滞回线的测量结果

饱和点: $2U_C = 28.8 \,\mathrm{mV}$ $B_S = 387.10 \,\mathrm{mT}$

剩磁: $2U_C = 7.80 \,\mathrm{mV}$ $B_r = 104.84 \,\mathrm{mT}$

矫顽力: $2U_{R_1} = 38.0 \,\mathrm{mV}$ $H_C = 10.96 \,\mathrm{A/m}$

1.2 不同频率下铁氧体饱和磁滞回线

不确定度估计: 示波器的不确定度为测出值的 2% 加满刻度值的 0.3%。测量 U_C 时满刻度值为 $50\,\mathrm{mV}$,测量 U_{R_1} 的满刻度值为 $500\,\mathrm{mV}$,所以

$$\begin{split} \sigma_{2U_C} &= 2\% \times 2U_C + 0.15\,\mathrm{mV} \qquad \sigma_{B_r} = \sigma_{2U_C} \times \frac{R_2C}{2N_2S} \\ \sigma_{2U_{R_1}} &= 2\% \times 2U_{R_1} + 1.5\,\mathrm{mV} \qquad \sigma_{B_r} = \sigma_{2U_C} \times \frac{N_1}{2lR_1} \end{split}$$

1. $f = 50 \,\mathrm{Hz}$:

剩磁:
$$2U_C=7.60\,\mathrm{mV}$$
 $\sigma_{B_r}=4\,\mathrm{mT}$ $B_r=(102\pm4)\,\mathrm{mT}$ 矫顽力: $2U_{R_1}=36.5\,\mathrm{mV}$ $\sigma_{H_C}=0.6\,\mathrm{A/m}$ $H_C=(10.5\pm0.6)\,\mathrm{A/m}$

2. $f = 100 \,\mathrm{Hz}$:

剩磁:
$$2U_C=7.80\,\mathrm{mV}$$
 $\sigma_{B_r}=4\,\mathrm{mT}$ $B_r=(104\pm4)\,\mathrm{mT}$ 矫顽力: $2U_{R_1}=38.0\,\mathrm{mV}$ $\sigma_{H_C}=0.6\,\mathrm{A/m}$ $H_C=(10.9\pm0.6)\,\mathrm{A/m}$

3. $f = 150 \,\mathrm{Hz}$:

剩磁:
$$2U_C = 7.60 \,\mathrm{mV}$$
 $\sigma_{B_r} = 4 \,\mathrm{mT}$ $B_r = (102 \pm 4) \,\mathrm{mT}$ 矫顽力: $2U_{R_1} = 37.5 \,\mathrm{mV}$ $\sigma_{H_C} = 0.6 \,\mathrm{A/m}$ $H_C = (10.8 \pm 0.6) \,\mathrm{A/m}$

不同频率的测量结果基本一致,因为磁滞回线已饱和,不发生显著变化。

1.3 50 Hz 下不同积分常量下的李萨如图

图 2: $RC = 0.01 \,\mathrm{s}$ 的李萨如图

图 3: $RC = 0.05 \,\mathrm{s}$ 的李萨如图

图 4: $RC = 0.5 \,\mathrm{s}$ 的李萨如图

1.4 100 Hz 下动态磁化曲线

表 2: 100 Hz 下动态磁化曲线的测量结果

测量次数	$U_{R_1}(\text{mV})$	$H_m(A/m)$	$U_C(\mathrm{mV})$	$B_m(\mathrm{mT})$	$\mu_m = \frac{B_m}{\mu_0 H_m}$
1	4.08	2.35	0.360	9.68	3277.9
2	14.75	8.51	1.40	37.6	3516.0
3	24.7	14.2	2.65	71.2	3990.1
4	34.7	20.0	4.00	107.5	4277.3
5	44.7	25.8	5.40	145.2	4478.5
6	54.8	31.6	6.75	181.4	4568.1
7	64.8	37.4	7.85	211.0	4489.5
8	74.8	43.2	8.85	237.9	4382.3
9	84.8	48.9	9.80	263.4	4286.4
10	94.8	54.7	10.55	283.6	4125.8
11	110.0	63.5	11.60	311.8	3907.4
12	125.0	72.1	12.20	328.0	3620.2
13	140.0	80.8	12.70	341.4	3362.3
14	155.0	89.4	13.05	350.8	3122.6
15	170.0	98.1	13.40	360.2	2921.9
16	185.0	106.7	13.70	368.3	2746.8
17	200.0	115.4	13.95	375.0	2585.9
18	230.0	132.7	14.20	381.7	2289.0
19	260.0	150.0	14.45	388.4	2060.5
20	290.0	167.3	14.65	393.8	1873.1

图 5: 100 Hz 下动态磁化曲线的测量结果

图 6: $\mu_m - H_m$ 曲线图

曲线变化规律: 磁导率随磁场强度先递增后递减, 且减到比起始磁导率还低, 在 $40\,\mathrm{A/m}$ 附近达到最大值。

起始磁导率: $\mu_i = \lim_{H \to 0} \frac{B}{\mu_0 H} = 3277.9$

1.5 不同频率下硅钢样品的动态磁滞回线

表 3: 不同频率下硅钢样品的动态磁滞回线

	最大点		剩磁		矫顽力	
	$2U_C(\text{mV})$	$B_m(\mathrm{mT})$	$2U_C(\mathrm{mV})$	$B_r(\mathrm{mT})$	$2U_{R_1}(\mathrm{mV})$	$H_C(A/m)$
$f = 20\mathrm{Hz}$	65.7	912.5	40.4	561.1	20.9	104.5
$f = 40\mathrm{Hz}$	65.5	909.7	42.3	587.5	242	121
$f = 60\mathrm{Hz}$	65.3	906.9	43.8	608.3	278	139

比较: B_m 随频率增大基本保持不变, B_r 和 H_C 随频率增大而增加。

解释: 频率大, 能量高, 磁滞回线面积增大, 非线性增大。

2 思考题

- 1. 区别: 静态磁滞回线是某一特定频率下一个周期内 B 随 H 的变化关系,反映的是材料的磁化关系和磁化历史。动态磁滞回线则是逐渐增大 H 范围时形成的逐步磁化的磁化曲线,二者在数值的大小和面积上都不同。影响因素: 材料材质、匝数、磁导率,面积和有效长度等。
- 2. 铁氧体的动态磁化特性几乎不随频率的变化而变化,其相对能耗不随频率升高而升高, 且电阻率高,在高频磁化时其涡流损耗小;硅钢材料的动态磁化特性随频率的上升而 改变,其能耗随频率升高而升高,且电阻率低,在高频磁化时其涡流损耗大。
- 3. $R_2C \gg T$
- 4. 改变示波器显示模式,将其改到 *ch*1 和 *ch*2 信号模式并获得稳定波形,通过比较两通道信号的相位来判断磁滞回线绕行方向。