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Hamiltonian

The central-field approximation

VCF (r) = −Ze2/4πϵ0
r + S(r),

HCF =

N∑
i=1

{
− h̄2
2m∇2

i + VCF (ri)

}
.

The residual electrostatic interaction：

Hre =
N∑

i=1


N∑

j>i

e2/4πϵ0
rij

− S(ri)

 ,

Hamiltonian:
H = HCF + Hre + Hs−o.
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Hamiltonian

It is generally very difficult to calculate the eigenvalues of the above
Hamiltonian, so two extremes are usually discussed.

1. LS-coupling scheme:

Hs−o ≪ Hre : Hs−o→perturbation, basic quantum numbers : LSJMJ,

2. jj-coupling scheme:

Hs−o ≫ Hre : Hre→perturbation, basic quantum numbers : nilijiJMJ.
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LS-coupling scheme without fine structure

Hamiltonian

H =

N∑
i=1

− h̄2
2m∇2

i + VCF (ri) +


N∑

j>i

e2/4πϵ0
rij

− S(ri)


 ,

H = HCF + Hre.

Consider
L =

∑
i

li, S =
∑

i
si, J = L + S.

No external torque:[
L2,Hre

]
= 0 and [Lz,Hre] = 0.

Hre doesn’t depend on spin:[
S2,Hre

]
= 0 and [Sz,Hre] = 0.
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LS-coupling scheme without fine structure

Therefore,
good quantum numbers : L,ML,S,MS,

eigenstates ofHre : |LMLSMS⟩ .

Label:
terms : 2S+1LJ.

e.g. 3p4p in silicon
l1 = 1, l2 = 1 ⇒ L = 0, 1 or 2,

s1 =
1

2
, s2 =

1

2
⇒ S = 0 or 1,

terms (without J) : 2S+1L = 1S,1P,1D,3S,3P,3D.
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Energy levels

Isotropy: degeneracy with respect to ML and MS.

Figure: 3p4p in silicon

Degenerate states

(2l1+1)(2l2+1)(2s1+1)(2s2+1) = 36. Figure: 3p2 in silicon
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Fine structure in the LS-coupling scheme

Spin orbit coupling of electrons
Approximate calculations of relativistic quantum mechanics at low speeds:

Usl =
1

2µ2c2
1

r
dU
dr s · l = ξ(r)s · l.

The Hamiltonian:
Hs−o =

∑
i

βisi · li = βLSS · L.

H = HCF + Hre + Hs−o.

the total electronic angular momentum: J = L + S.

∵ L · S =
(J · J − L · L − S · S)

2
,

∴
[
J2,H

]
= 0 and [Jz,H] = 0.
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Fine structure in the LS-coupling scheme

Therefore, Lz,Sz are no longer conserved.

good quantum numbers : L,S, J,MJ,

eigenstates ofH : |LSJMJ⟩ .

The energy shift: (degeneracy with respect to MJ)

Es−o = βLS ⟨S · L⟩

=
βLS
2

{J (J + 1)− L (L + 1)− S (S + 1)} .

Lande interval rule
The energy interval between adjacent J levels:

∆EFS = EJ − EJ−1 = βLSJ ∝ J.
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Example: pp electronic configuration

npn′p (n ̸= n′)

a

a1̄ = −1.
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Example: pp electronic configuration

(np)2

For equivalent electrons the Pauli exclusion principle restricts the states.

Even rule:

2|(L + S).
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Example: pp electronic configuration

Figure: pp electronic configuration
energy levels

Black line: (np)2,
Gray line: prohibited by Pauli’s principle,
All line: npn′p.
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Hund’s rules

Hund’s rules
1. S ↗ E ↘;
2. L ↗ E ↘;
3. Normal order (J ↘ E ↘) : under half shell layer;

Anomalous order (J ↗ E ↘) : over half shell layer.
However, Hund’s rules are empirical and there are exceptions. They are
more effective in inferring the ground state, with only a few exceptions.
Using it to discuss excited states is not very reliable.

Application: determine the ground state
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Hund’s rules

Theoretical explanation
Generalize the potential expression of spin-orbit coupling to the coupling of
any two angular momentum:

Ul1l2 =
1

2µ2c2
1

r
dU
dr l1 · l2, (L = l1 + l2)

The contribution of the coupling of angular momentum to the interaction
potential:

⟨l1 · l2⟩ =
1

2

[
L(L + 1)− l1(l1 + 1)− l2(l2 + 1)

]
h̄2.

Apparently, L ↗ ⟨l1 · l2⟩ ↗, so the key is dU
dr ? 0.
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Hund’s rules

Theoretical explanation
• Electron-electron Coulomb repulsion: 1&2

dU
dr ∝ d

dr

(
e2
r

)
∝ − 1

r2 < 0,

• Electron-nucleon Coulomb attraction: 3-normal order

dU
dr ∝ d

dr

(
−e2

r

)
∝ 1

r2 > 0,

• Hole-nucleon Coulomb repulsion: 3-anomalous order

dU
dr ∝ d

dr

(
e2
r

)
∝ − 1

r2 < 0.
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The jj-coupling scheme

Hamiltonian
Hs−o ≫ Hre:

H = HCF + Hs−o

=
N∑

i=1

{
− h̄2
2m∇2

i + VCF (ri)

}
+

N∑
i=1

ξi(ri)l1 · si

=

N∑
i=1

{
− h̄2
2m∇2

i + VCF (ri) + ξi(ri)l1 · si

}
.

Approximate to an independent particle system.

Use a complete set of quantum numbers for each electron to characterize

quantum states: eigenstates of Hs−o:
N∏
i
|niliji(mj)i⟩.
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The jj-coupling scheme

Energy:

Es−o =

N∑
i

⟨niliji(mj)i|Hs−o|niliji(mj)i⟩

=
1

2

N∑
i

ξinili(ri)[ji(ji + 1)− li(li + 1)− 3

4
].

(ξinili(ri) = ⟨nili|ξi(ri)|nili⟩ .)

Therefore,

good quantum numbers : j1, j2, · · · , ji, · · · , jN, J.

Label:
(j1, j2, · · · , ji, · · · , jN)J.

Considering Hre, the energy levels will split according to the total angular
momentum J. (degeneracy with respect to MJ)
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Example: pp electronic configuration

npn′p (n ̸= n′)

(np)2

For equivalent electrons the Pauli exclusion principle restricts the states.
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In theory

1

Figure: sp configuration

As β increases further the spin–orbit and residual electrostatic interactions
become comparable and the LS-coupling scheme ceases to be a good
approximation: the interval rule and (LS-coupling) selection rules break
down. At large β the jj-coupling scheme is appropriate.

1β: the spin–orbit interaction parameter.
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In theory and experiment

2

Figure: p2 configuration

A evident transition by χ.

2χ: characteristic parameter.
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In experiment

Even for Hg, the LS-coupling scheme gives a closer
approximation than the jj-coupling scheme.
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In experiment

Even for Hg, the LS-coupling scheme gives a closer
approximation than the jj-coupling scheme.

3s3p, Mg 6s6p, Hg
2.1850 3.76
2.1870 3.94
2.1911 4.40
3.5051 5.40

Table: E/m−1

e.g. for the 6s6p
configuration the
Ere > Es−o but the interval
rule is not obeyed because
the spin-orbit interaction is
not very small compared to
the residual electrostatic
interaction.
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In experiment

Even for Hg, the LS-coupling scheme gives a closer
approximation than the jj-coupling scheme.

J E (m−1)
2 16908687
1 16908694
0 16908793
1 17113500

Table: The 1s2p configuration
in helium

The interval rule is not
obeyed: This occurs in
helium because spin–spin
and spin–other-orbit
interactions have an energy
comparable with that of
the spin–orbit interaction.
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Electric dipole selection rules

Single electron
From conservation laws and quantum mechanics calculations:

∆j = 0,±1 (j = 0 ↮ j′ = 0),

∆mj = 0,±1, (mj = 0 ↮ mj′ = 0 if ∆j = 0),

∆l = ±1,

∆ml = 0,±1.
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Electric dipole selection rules

LS-coupling scheme:

∆J = 0,±1 (J = 0 ↮ J′ = 0),

∆MJ = 0,±1 (MJ = 0 ↛ MJ′ = 0 if ∆J = 0),

Parity changes,
∆l = ±1 One electron jump,
∆L = 01,±1 (L = 0 ↮ L′ = 0),

∆S = 02.

1.∆L = 0 is possible in principle, but more than one electron must be
excited to a high-energy state.
2.Exception: In the mercury atom, however, transitions with ∆S = 1 occur,
such as 6s2 1S0 − 6s6p 3P1, that gives a so-called intercombination line
with a wavelength of 254 nm.
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Electric dipole selection rules

Single electron
From conservation laws and quantum mechanics calculations:

∆j = 0,±1 (j = 0 ↮ j′ = 0),

∆mj = 0,±1, (mj = 0 ↮ mj′ = 0 if ∆j = 0),

∆l = ±1,

∆ml = 0,±1.

jj-coupling scheme (two electrons) :{
∆j1 = 0, ∆j2 = 0,±1, or ∆j1 = 0,±1, ∆j2 = 0,

∆J = 0,±1 (J = 0 ↮ J′ = 0),

In fact, many elements fall between these two extreme situations, and the
selection rules on both sides are not strictly followed.
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Magnetic dipole selection rules

According to the multipole expansion of electromagnetic interactions, the
magnetic dipole interaction can be described as the interaction between
magnetic moment and vector radius, with the coefficient being the
first-order spherical harmonic function.
Therefore, the interaction can be expressed as

H′ ∝ cos θY10(θ, ϕ) ∝ Y00(θ, ϕ).

Therefore, apart from having the same selection rules as electric dipole
transitions, there are also angular momentum selection rules:

∆l = 0.

Directly generalized to multi-electron atoms:

∆n = 0,

{
∆L = 0, ∆S = 0,

∆J = 0,±1, ∆MJ = 0,±1.
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About concepts

Original concepts
A atomic spectral lines split in an external magnetic field:{

3 : The normal Zeeman effect.
the other : The anomalous Zeeman effect.

Modern:
In a strong field: Paschen-Back effect.
In a weak field:{

3 : The normal Zeeman effect.
the other : The anomalous Zeeman effect.
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The Paschen-Back effect

For LS-coupling scheme, the atom’s magnetic moment:
µ = −µBL − gsµBS.

The interaction of the atom with an external magnetic field is described by
HZE = −µ · B.

In a strong field: consider total magnetic moment along the z-direction
µz = µsz + µlz = −2µBms − µBml = −(2ms + ml)µB.

Energy:
EZE = −µzB = (2ms + ml)µB.

Selection rules {
∆ms = 0

∆ml = 0,±1
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Example

Figure: ml = 1,ms = −1

2
,mj =

1

2
&ml = −1,ms =

1

2
,mj = −1

2
are degenerate

李昊润 (PKU) The LS-coupling scheme July 2024 29 38



The Zeeman effect

In weak magnetic field, Hamiltonian:

HZE = − ⟨µ · J⟩
J (J + 1)

J · B =
⟨L · J⟩+ gs ⟨S · J⟩

J (J + 1)
µBBJz.

Energy:
EZE = gJµBBMJ.

Lande g-factor:
gJ =

⟨L · J⟩+ gs ⟨S · J⟩
J (J + 1)

.

Assuming that gs ≃ 2:

gJ =
3

2
+

S (S + 1)− L (L + 1)

2J (J + 1)
.
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The Zeeman effect

No magnetic field
Consider 2 → 1:

hν = E2 − E1.

External magnetic field B:

E′
2 = E2 + g2MJ2µBB, E′

1 = E1 + g1MJ1µBB.

Spectral line splitting:

E′
2 − E′

1 = hν + (g2MJ2 − g1MJ1)µBB.

Selection rules

∆MJ = 0,±1.
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The normal Zeeman effect

Figure: Cd 51D2 → 51P1 : S1 = S2 = 0 ⇒ g1 = g2 = 1
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The anomalous Zeeman effect

Figure: Na 32P3/2 → 32S1/2/ 32P1/2 → 32S1/2
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Summary

Figure: The hierarchy of atomic structure for the 3s3p configuration of an alkaline
earth metal atom.

Break down:
(a) The residual electrostatic interaction is not small compared to the
energy gap between the configurations.
(b) The jj-coupling scheme is a better approximation than LS-coupling.
(c) The Paschen–Back effect arises.
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Q&A



Thank you for listening!
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